
Page 1

Evolutionary Design
of Complex Software

Howie Shrobe
John Salasin

Page 2

Software is not only a very critical component of most DoD systems
today, but it is also that part of the system which should be able to
quickly adapt to changes in the system's environment.

Over the long period of time between the first formulation of system
requirements to the eventual retirement of the system, many
environmental changes are experienced -- changes to hardware and
configuration; changes to mission; changes to operational elements;
changes in amounts and types of data processed. Today we adapt to
these changes by changing the software, but the changes are made
only at considerable risk.

Change activity can all too often be characterized by:

•difficulty in making changes to an operational system without incurring
costs disproportionate to the size of the change.

•an imperfect understanding of the current system.

•an inability to accurately estimate the effort and resources required to
make the change.

•small (conceptual) changes that affect large amounts of software.

•inability to predict with confidence the impact of a change before
making it

•uncertainty of the validity of the change once it is made.

This program envisions a paradigm shift away from the specify- build-
then-maintain life cycle assumed in the past to one of continuous
evolution.

DARPA
Evolutionary Design of Complex Software

Vision

To develop the technologies needed to support continuous evolutionary
development of families of long-lived military software systems

 Environment

• Long system lifetimes

• Changing missions

• Stovepipe development
• Loss of design rationale

• “Maintenance” treated as
an afterthought

• Languages & tools
sacrifice flexibility for
efficiency

• Commercial sector focus
on high-volume, modest
reliability & complexity, not
DoD needs.

Goal

Method

argument

Evolutionary
Programming
Environments
and Languages

Rationale
Management

HyperProgram
Design Web

software

rationale

system models

Do it this way because...

That won’t work because...

System Modeling
Analysis and
Composition

Page 3

The goals of EDCS are to provide economic methods for systems to
keep up with changing requirements over their lifetimes by:

1. Providing a strong information base for evolution -- e.g., by
supporting the capture, modular structuring, and effective access of
design rationale information (in both formal and informal formats);
managing relationships among all different aspects of information; and
providing enhanced automated support for software/system
understanding.

2. Enabling analysis of impacts of intended changes -- e.g., through
static analysis of impacts of change on performance, function, and
other system attributes such as reliability and safety; dynamic analysis
of change through modeling, rapid prototyping and improved testing
capabilities.

3. Enabling design and implementation of more adaptable systems - -
e.g., through the use of: improved system and software architecture
notations and representations; technology to effect system changes
through changes to a (hardware or software) architectural description;
incremental verification and validation; very high level domain specific
languages; architecture-based component selection and code
generation; reengineering of legacy systems; and use of dynamic
implementation languages that enhance the capability to make changes
to operational systems.

DARPA
Evolutionary Design of Complex Software

Goals

n Paradigm shift to incremental evolution of systems
n extend lifetime of DoD systems
n effort to change proportional to size of change -- not to

size of system

n Reduced startup costs for technology adoption
n experience of point successes made available and

affordable
n reduced costs to tailor languages/tools to specific

domains

n Prediction of key system properties
n high confidence estimation prior to implementation or

modification
n guarantees of performance with respect to key

properties

Page 4

Several approaches are being taken to assure the transition of research
results.

To increase the integration and usability of results, participants are
divided into five technical thrusts, which have been termed "cluster”
areas. The clusters are:

1) Rationale Capture and Software Understanding;

2) Architecture and Generation;

3) High Assurance and Real-Time;

4) Information Management , and;

5) Dynamic Languages.

Each cluster, as well as individual projects, are expected to adopt a
"feature driven" approach. They are providing user oriented
descriptions or fact sheets that identify the features or capabilities being
developed. Clusters must define "usage scenarios" and coordinate
intracluster demonstrations. Community use of EDCS results (i.e.,
"eating your own dog food") and close coordination are key parts of the
program’s success formula.

The program is, in addition, conducting several small cross-cluster
demonstrations on real military systems (e.g., F-16, B-2 upgrade,
JSIMS, Satellite Ground Station).

DARPA
Evolutionary Design of Complex Software

Technology Transition Plan

n Commercialization of Dynamic Languages and Tools
n Three Tiers within Program

n Technology Development - Languages, Tools, Integration Frameworks
n Capability Packaging - Environments
n Demonstrations, Tests &Evaluations - Use of complete capability in operational

context

n Clustering for Transition
n Program will group projects into “Clusters”
n Each technology cluster will feed into Capability Package
n Each Capability Package cluster will feed into Demonstration
n Each Cluster will have advisory board of potential users

n Funding reserved for transition efforts

n Limited Application Demonstrations
n Several small ($1M / Year) demonstrations focused on use / evaluation

of capability packages
n Need to develop plan for Large Scale Application Demo Program to

start in FY 98 -- multiple Service organizations have expressed
interest

Page 5

Each cluster contains a mix of projects. “Product Development and
Integration Projects” will be producing and integrating languages and
tools. “Concept Development Projects” are smaller and more theoretical
efforts, many co-funded by NSF. This categorization, as with the
assignment of projects to clusters, is an informal arrangement designed
to facilitate the transition of technology from basic research to end
users.

In addition to supporting technology investigations and demonstrations
of effectiveness in real military systems, the EDCS concept includes a
focus on capability packaging. The primary purpose of the capability
packaging activity is to provide demonstrations with scaled-up,
evaluated, and integrated capabilities. It is intended that, within a
specific area of concern, packages may be configured and tuned in
many different ways including the selection from alternative
technologies. Therefore, the packages, rather than constituting
solutions, should be thought of as enabling easy creation of solutions. A
Capability Package should not focus exclusively on a single technology
/ tool (e.g., a single ADL, a single reverse engineering tool) but should
provide the ability to integrate multiple technologies / tools to solve a
focused set of problems. It must be "open".

Part of the EDCS program is performing fundamental research aimed at
developing formal verification technology. These programs are closely
related to Assurance and Integration, a subprogram of the Information
Survivability research area.

The following slides provide more detail on the clusters.

DARPA
Evolutionary Design of Complex Software

“Cluster” Organization

n Information Management: Create integrated incremental
information management tools for all aspects of the design and
implementation including both formal and informal representations.

n Dynamic Languages: Create implementation languages and
environments which enable and structure rapid incremental changes.

n Rationale Capture and Dependency Tracking: Create non-
intrusive techniques and systems which capture the reasoning behind
design decisions and which make them accessible in a structured format.

n Architecture and Generation: Create techniques and tools to
represent the abstract structure of a system, to analyze its behavior at
this level, to synthesize changes to the executable by modifying this
representation, and to recertify the system with cost proportional to the
size of the change.

n High Assurance: Provide evidence throughout the software life cycle
that all critical system requirements are being met. Support safe on-line
upgrades for complex, safety critical, Realtime software applications.

Page 6

Note that projects can be active in more than one cluster and that the
concerns of the clusters overlap. This diagram shows some of the
major interrelationships.

DARPA
Evolutionary Design of Complex Software

Cluster Relationships

Information Management

Rationale
Capture

Architecture/
Generation

High
Assurance

Dynamic
Languages

Architecture expresses rationale,
validated against rationale

All artifacts accessible
through IM capabilities,
IM capabilities accommodate
diverse approaches

Tests, analyses, proofs based
on architectural specifications

Architecture expresses
attributes, guides
optimizations

Page 7

This cluster addresses the software maintenance and reengineering
problem by providing capabilities to initially capture or recover/generate
explanations for design decisions and to use this knowledge to assists
in making decisions affecting system evolution. This information is
envisioned to be part of a software component's "design record."
Research topics include: domain analysis, reverse engineering,
consistency management, conflict resolution, and requirements
engineering.

The usage scenario includes integrating new requirements with designs
and rationale that are recovered from legacy systems. It provides
capabilities to support collaborative work and to structure studies that
lead to design decisions -- allowing both the decisions and the rationale
behind the decisions to be captured. It integrates information about
risks, technology, and architecture to improve our ability to predict cost
and performance. Finally, it provides automated tools to tailor the
explanation of software to the particular background of a user and the
task he or she is performing.

DARPA
Evolutionary Design of Complex Software

##

Product Integration Team

Sample Scenario Potential Technology Payoffs

Cluster Coordinators: Carla Burns (Rome
 Lab), Scott Tilley (SEI)
Knowledge Evolution (FAMILIAR): S. Bailin
USC (Win-Win): Barry Boehm
Ohio State; Chandra
USC (Media-Doc): Lewis Johnson
CS3: K. Narayanaswamy
U Ill (Orbit): Daniel Reed
Xinotech: Romel Riveraa
Ga Tech (MORALE): Spencer Rugaber

Cluster Definition
Rationale Capture concerns technology that
captures facts and hypotheses about
software artifacts that form the basis for
evolution. Software understanding refers to
the recapture of rationale. The captured
information contains formal and informal
components and includes reasoning about
alternatives as well as functional and non-
functional attributes.

• Version control of stored rationale

• Collaborative support for design
 negotiation

• Rationale recapture from legacy

• Software Understanding tools related
 to domain models

New Requirement

Legacy System
w/Operational History

Design
Record

Design collaboration

Negotiated design decisions

Impact prediction
on legacy system

Change strategy
developmentRationale Recovery

Rationale Capture

Page 8

This cluster focus is on the various roles that a software architecture
plays in the initial specification and design of a system, as well as how it
can support its evolution through its adaptability, extendibility, and
scalability. Research topics include:

•architecture notation and representation,

•domain-specific modeling,

•architecture description languages (and their interoperability),

•styles and patterns,

•static analysis (e.g., constraint satisfaction, views and visualization),
dynamic analysis,

•configuration support,

•composition assistance,

•generation techniques, and

•architecture-centered processes.

More basic research efforts are focusing on specifying the semantics of
architecture description languages and on developing improved ways of
representing constraints and using the constraints to supports system
evolution.

DARPA
Evolutionary Design of Complex Software

##

Architecture and Generation Cluster

Product Integration Team

Sample Scenario Potential Technology Payoffs

Cluster Coordinators: Paul Clements
 (SEI), Mark Gerken (Rome Lab)
USC: Bob Balzer
Texas: Don Batory
CMU: David Garlan
Kestrel: Richard Jullig
Stanford: David Luckham
SRI: Mark Moriconi
Vanderbilt: Janos Szitpanovits
USC: David Wile
Stanford: Gio Wiederhold
Lockheed Martin: Dick Creps

Cluster Definition

Improve capabilities for working at higher
levels of abstraction to:
 • Specify systems and system properties
 • Analyze architectures / designs for
 property satisfaction
 • Generate operational code
 • Adapt systems to incremental changes

• Multiple views of system through
 interrelated ADLs
• Integrated toolsets for architectural design,
 analysis, and measurement
• Tools to construct languages for use by
 subject matter experts
• Multi-targeted program generators
• Precise semantic design records, enabling
 automated analysis and test

System
Development

Architecture
Development

System
Evolution

revise domain model

refine design

create components

populate library

evaluate architecture

develop model

choose style

develop domain
model

Repository
 Domain Model

 Architecture Model

 Components

test reliability

integrate

evaluate design

create components

refine

choose domain
architecture

Page 9

 One of the problems faced in evolving systems is the lack of useful
information about the system and the history of its development /
evolution. Even the information that generally is available, such as
source code, documentation, and test data, is difficult to assimilate and
may be inconsistent and inaccurate. Other information crucial to
effecting system changes such as the rationale behind some of the
original design choices is almost never available. In an evolutionary
system, this information will be captured and made accessible
throughout the system’s lifetime.

 This cluster's goal is to provide an advanced information substrate to
support the conceptualization, representation, and manipulation of
multi-media software artifacts. Research topics include: the WWW,
CORBA, integration mechanisms, versioning, hyperlinks, semantic
links, evolution of persistent data, information models, views, metalevel
information representation and semantics, and process and transaction
enactment.

DARPA
Evolutionary Design of Complex Software

##

Information Management

Product Integration Team

Sample Scenario Potential Technology Payoffs

Cluster Coordinators: Cliff Huff (SEI),
 Jim Milligan (Rome Lab)
Columbia (HYDIES): Gail Kaiser
Colorado (Sybil): Roger King
CoGenTex (EMMA): Tanya Korelsky
Loral (Evolver): Teri Payton
Brown: Steven Reiss
SPS (I-SPECS): Andy Rudmik
CMU (ACT): Bill Scherlis
MIT (Express): Olin Shivers
UC Irvine: Richard Taylor

Cluster Definition
The cluster’s vision is to retain, organize,
and exploit all useful software
information.The result is a scaleable
infrasturucture that supports:
• information navigation and discovery
• effective collaboration
• heterogeneous fine-grained consistency
 management
• disciplined incremental evolution

• Rapidly connecting and evolving
 heterogeneous data and object bases
• Infrastructure to integrate link server
 hypermedia systems with the WWW
• Support for hyperweb CM
• Link generation based on document
 semantics
• Collaboration support integrated with
 information infrastructure

Prime Contractor(s)

COTS Vendors

Associate
Contractors

System A

System B

System C

Store,
Access,
Visualize,
Collaborate,
Manage

•
Distributed,
Heterogeneous
Information and
Software

Page 10

This cluster addresses the topic of providing evidence throughout the
software life cycle supporting high confidence that all critical system
requirements will/are being met.

Research topics include: support for static analysis and testing with
special emphasis on their synergistic support for software evolution;
reducing time and effort spent on software testing while producing
software of equal or better quality (via specification & modeling
languages, quantitative quality metrics, multi-media aids, technique
integration mechanisms); supporting safe on-line upgrades for
complex, safety critical, realtime software applications; developing
systematic and algorithmic methods for analyzing likely changes to
software solutions and for localizing these changes; and representing
behavioral and architectural specifications in a knowledge base and
generating code from that representation.

Other basic research efforts are providing a formal basis for run-time
assurance and program verification.

DARPA
Evolutionary Design of Complex Software

##

High Assurance and Real-Time

Product Integration Team

Sample Scenario Potential Technology Payoffs

Cluster Coordinators: Deborah Cerino
 (Rome Lab), Howard Lipson (SEI)
UMass, UCI, Perdue (Perpetual Test):
 Leon Osterweil, Lori Clarke, Debra
 Richardson, Michael Young
MCC (QUEST): Mark Breland
CMU (Metaphor): Takeo Kanada
U Ill (FASS): Jeff Tsai
U Ariz (DIADS): Richard Schlichting
CMU (INSERT): John Lehoczky

Cluster Definition

Current System Changed System

Derive/Measure
Properties

COTS/Reuse
Library

Provide Safety Net

Static Analysis

Preserve Properties

COTS Evaluation

Dynamic Analysis

The cluster consists of projects that
contribute to the design, development,
deployment, integration, interoperation, and
evolution of systems that provide evidence
supporting high confidence that all critical
system
requirements will be met.

• Current high confidence
system
• Need to upgrade with
 - new functions
 - some COTS products
 - some reusable components

Impact Prediction • Safe, on-line upgrades to Realtime
 systems
• Component composition with assured
 Quality of Service
• Architecture-based constraint
 checking
• Integrated test and analysis for
 user-specified properties

Page 11

Evolution is characterized by adaptability. The software in most
systems today is parameterized to some extent. That is, the designer
provides for some limited variation in the software characteristics by
preplanning some support for changing and/or tailoring it at runtime, at
system generation time, or some other time in the system's lifecycle
beyond its initial development. Thus, binding of the system (for these
limited, pre-established parameters) is delayed and the system has
been made adaptable. EDCS extends the adaptability of systems far
beyond that usually experienced through software parameterization.

The use of dynamic languages both for their late binding characteristic
and for their underlying support for the creation of very high level
domain specific languages is an important area for EDCS research. Of
particular interest are: the ability to achieve high performance
applications using dynamic languages; the ability to apply advanced
compilation techniques; the ability to selectively provide static as well as
dynamic bindings; the ability to provide predictable and realtime
performance; and the ability to intermix dynamic and conventional
programming languages for a single application.

 This cluster is providing an advanced software development
environment for Dylan, Haskell, ML, Ada95, Java, and CLOS. This
includes support of language interoperability. Research topics include:
hyper-program structure, higher-level analysis tools, very high level
objects, modular proofs of correctness, and aspectual decomposition.

DARPA
Evolutionary Design of Complex Software

##

Dynamic Languages

Product Integration Team

Sample Scenario Potential Technology Payoffs

Cluster Coordinators: Elizabeth Kean (Rome
 Lab), Kurt Wallnau (SEI)
Harlequin (Dylan Works): Norvig
Franz (CLOS): Jim Veitch
CMU (GWYDION): Scott Fahlman
Intermetrics: Bill Carlson
Dynamic Object Oriented Languages: Laddaga
Northeastern: Karl Lieberherr
Rice (Smart PE)
Yale (Haskell/ML)

Cluster Definition

Current System Changed System

Subsystem Replacement

Development of UI

The cluster is focused on technology to
enable software developers to structure and
write adaptable programs (full life cycle)
The constituent DL technologies include:

• dynamic languages
• language centered environments
• technology to ensure deployability

• Current system-tightly coupled
federated modules
• Need to upgrade in
simulated environment
- changed hardware
- new algorithms/subsystems

• Reduced development cost for
 domain-specific languages
• Automatic generation of “glue” and
 smart wrappers
• Incremental analysis and verification
• Incremental optimization

Incremental development
and validation of alternative
algorithms

Insertion of modules in
other languages

Page 12

The EDCS kickoff meeting was held 17-19 July 1996. As a followup to
that meeting, participants are revising their project plans to support
cluster activities and to define capability packages. This plan is being
revised.

DARPA
Evolutionary Design of Complex Software

Information
Management

Core Node & Link
types definitions

CORBA
Interfaces

Web Browsing

Plan

FY96 FY97 FY98 FY99 FY00
Core Event definitions
 Event Bus

Versioning

Process & Workflow
Manager

System Modeling
support

Complete Pgm’ing
Environment

Demonstration on
realistic examples

Rationale
Management

Email & Web
based design
dialog capture

Linkage to
implementation
artifacts in design
web

Use of Natural
Language (Tipster)
Technology for
retrieval

Linkage to system
modeling artifacts in
design web.

Use of Natural
Language
Technology to extract
design information

Dynamic
Languages

Full compiler for
Dylan

CORBA interfaces
for dynamic
language family

Advanced type
propagation

Sealing techniques

Integration with Web

Real Time Garbage
collection

Virtual Machine for
Dynamic Language
mobile code

Demonstration on
realtime (or time
critical) applications

Architecture &
Generation

System modeling
language -
standard
intermediate
representation

Timing analysis

Include other non-
functional attributes
(e.g., fault-tolerance)

Event conflict analysis

Composition &
Synthesis of Glue

Integration with testing

Integration with
Rationale
management

Effects propagation
analysis

Incremental
Recertification

Initial Integrated Toolset
prototype of current
analysis and oracle-

based test tools

“Active software safety
nets” demonstrated
on F-16 Automated

Maneuver and Attack
System (AMAS)

Extended capability
Static and Dynamic

Analysis tools (Jovial/
C++/Ada/CMS2

support) support)

Integrated
capabilities

demonstrated.

High Assurance Open framework for
test an d

analysis tool
integration

UNDER CONSTRUCTION

Page 13

DARPA
Evolutionary Design of Complex Software

Technical Direction/Assessment

Challenge

Absence of information management tools to
support evolutionary development

Programming languages do not support both
incremental development and high
performance

Design Rationale is usually lost and is rarely
captured in useful form

No representation at higher conceptual level
than code

Recertification is major bottleneck in
evolutionary life cycle

Status
Partial solutions available in Lisp and similar environments.

Heterogeneous information base integration
demonstrated. Beginning work on more extensive
approaches in this program

Good starting points in current work on ML, Dylan and
Scheme. Still need better ideas for “garbage
collection” and cross language integration

Technologies exist for representing rationale and
relationships. Problems with supporting multiple types
of varying links (high complexity), heterogeneous
data stores, capturing important information, and
presenting appropriate information in a useful way

Initial prototype languages exist
limited experience
need linkage to implementation artifacts and design

web
Mainly used for synthesis or composition -- need

additional support for analysis
Beginning to formalize reusable patterns

Improved techniques demonstrated for testing and analysis
with respect to critical properties. These need to be
expanded in language/notation coverage, driven by
architectural representations, and extended to
support continual testing and analysis over system
life-cycle

Approach
Develop HyperProgram Design Web

Standard (CORBA) Interfaces
WWW browsable
Extensible Set of Link Types
Event Bus & Process Management
Variable levels of granularity

Develop new implementation techniques for dynamic
languages which yield performance comparable to
those of static languages

Type propagation algorithms
Realtime “garbage collection”
Cross language integration

Create representations for design rationale which make it
easy to retrieve and browse

Create natural collaborative environment in which
rationale capture has low cost

Develop System Modeling Language
Hierarchical decomposition
Abstract Components
Abstract Connectors
Specification of constraints
Linked to implementation artifacts

Use HyperProgram Web to capture and reuse results of
previous analyses

